
ADAISS8 979 DEGENERATE NULTIVARIATE STATIONARY PROCESSES: IASICITY 1/1
PAST AND FUTURE AN.. (U) NORTH CAROLINA UNIV AT CHAPEL
HILL CENTER FOR STOCHASTIC PROC.. A S NIANEE ET AL.

UNCLASSIFIED NAY 95 TR-99 AFOSR-TR-85-9675 FIG 2/1 N

lEEEEEEEEEEli
EEEEEEEEEEEEEE

Iffffflll...



[7.

1 0 III28 2=1i~~

II.

rt.

"-1 
-6

NATIONAL BUREAU OF STANDRDS
" MIGROA OPy ESO UT M TEST C WA T

wJ

* . . .S. . . .. . . . . . .



UNCLASSIFIED
SECURITY Z..-ASSIPICATION OF T)403 PAGE

ORT DOCUMENTATION PAGE
1 c-In * l RESTRICTIVE MARKINGS

21 AD-A 158 8 93. OISTRIBUTIONIAVAILABILITY OFPOR

Aooroved for :)ublic release
2b. .ae...bicAiONOOWNGAOING SC?4EOULE D istribution Unlimritec.

A. PERIFORMING ORGANIZATION REPORT NUMBERIS) S. MONITORING ORGANIZATION REPORT NUMBERI-l

Technical Report No. 99 AfP lS-TR. 3 - 67
G&. NAME OF PERFORMING ORGANIZATION &b OPPICE SYMBOL 7a. NAME OP MONITORING ORGANIZATION

Center for Stochastic Processes1 AFOSR/NM
Gec. ADDRESS Cjty. State and ZIP Code) 7b. ADDRESS (CIty. SLOWa and ZIP Co"e,

Dept. of Statistics Bldg. 410
University of NOrth Carolina Boiling AFB D.C1. 20332-6448
Chapel Hill, NC 27514 ______________________________

k. NAM ' OP FUNOINGSPONSORING jab. OFp FICE SY MaoL . . PROCUREMENT INSTRUMENT OENTIF 'CAT(ON NUMBER
ORGANIZATION a pf cabici

AFOSR I_______ F49620-82-C-0009
Sc. ADDRESS Icily. State and ZIP Code) 10. SOURCE OP FUNDING NOS.

Bolling AFB PROGRAM PROJECT TASK WORK UNIT

Washington, DC 20332 ELEMENT NO. No. NO. NO.

11. TI TLE (Incluade Secuity Ckingltaoni

I2. PERSONAL AUTH.OR(S REPRESENTATION
A.G. Miamee and M. Pouraluadi
i3a. TYPE OP REPORT 13b. TIME COVERED 14. OATE OP REPORT (Y.. NVo.. D47) 1S. PAGE COUNT

Technical PROM q..../BL. TO&FtIRS...I. May 1985 37
16I. SUPPLEMENTARY NOTATION

17 COSATI CODES IS. SUUBACT TERMS lComtsueaen wrem inivoesaa and idenlity b7 block n~umber#

91ELO GROUP sue. GR. q-variate stationary processes, autoregressive and
moving average representations, spectral density, mean con-
_1e1jence. _ancgle between past adftr

19. ABTRACT IContnl,.. ws tu~rs. if neesur and iden Iffy by Mtock number)

Let {X nI be a not necessarily full rank multivariate weakly stationary stochastic
process. It is shown that fX nI forms a generalized Schauder basis f or the time domain of th
process if and only if the angle between its past-present and future subspaces is positive.
Then validity of the autoregressive representation of {X}n , and that of its predictor, is
considered and some characterization for these representations are given. Under the addi-
tional assumption that the range of the spectral density f of a degenerate process iX 1} is
c3nstant some more concrete criteria f:r the validity of these representations are ob~ained.

ELFOTIC F ILE CORY qF L? jXQ_
2&. OSTRBUTION/AVAILABILITY OP ABSTRACT 21. ABSTRACT SECURITY CLASSIPICAM1%

UNCLASSIPIEOI/UNLIMITRO MSAME AS RPTr. C5OTIC USERS 0 Unclassified%7A
22a. NAME OP RESPON1SIBLE INDIVIDUAL 22b. TELEPHONE NUMBER 22.. OFF ICE SY M& L

(IcIA Arts Code)

Brian W. Woodruff MAJ, USAF (02)77-5 0 28 NM

00 FORM 1473,83 APR EDITION OP I JAN 73 IS OBSOLETE. _______________

-1 / SECURITY CLASSIFICATION OF THIS PAGE



LAFOSR-TR.85-0675
CENTER FOR STOCHASTIC PROCESSES

Departmnent of Statistics
University of North Carolina
Chapel Hill, North Carolina

DEGENERATE MULTIVARIATE STATIONARY PROCESSES:

BASICITY, PAST AND FUTUJRE, AND AUTOREGRESSIVE REPRESENTATION

by

A.G. Miamee

and

Mohsen Pourahmadi .~O.~1

Technical Report No. 99

May 198S



DEGENERATE MULTIVARIATE STATONAR

BASICITY, PAST AND FUTURE, AND AUTOREGRESSIVE REPRESENTATION

Accesslon For
NTI GF-_X

A.G. Miamee1

Center for Stochastic Processes .7

Department of Statistics DTI -

University of North Carolina cp
Chapel Hill, NC 27514 ISFCI

and

Mohsen Pourahmadi2  -.1 ty Cci

LPcpartment of Mathematical Sciences
Northern Illinois University

DeKalb, IL 60115

Abstract: Let IX libe a not necessarily full rank multivariate weakly stationary
____-n

*stochastic process. It is shown that {X n} forms a generalized Schauder basis

for the time domain of the process if and only if the angle between its

past-present and future subspaces is positive. Then validity of thc autoregressive

representation of {X n }, and that of its predictor, is considered and some

characterization for these representations are given. Under the additional assump-

*tion that the range of the spectral density f of a degenerate process (X nI is

*constant some more concrete criteria for the validity of these representations

arc obtained.

%.IS 198o) Subject__Classification: Primarv 621\110; Secondarv 60c,12

Kevwords and Phrases: q1-variate stationary processes, autoregressive and moving

a verage representat ions, spectral density, mean convergence, angle between past

'Ind fuur.

Research supported by .\POSR Contract No. 1:49620 82 C 0009. On leave from

Isfahian University of Technology, Isfahan, Iran.

2 esearch supported by the NSF Grant MCS-8301240.

A~o-ved f'or pli1hl Ift~ eS

.................................. ......... ... . .



*7 (

1. Introduction. Let {X } = {X ; n = 0,+I, ...} be a q-variate weakly stationaryn n -

stochastic process (WSSP) with spectral distribution (matrix) F(X), -7 < X <

. An important problem in prediction theory of sueh processes/Ts to find conditions

- on the process, or equivalently on its spectral distribution F, so that the

linear least square predictor of a future value of the process admits a

mean-convergent series representation in terms of the past (observed) values

of the process. This problem was solved by Wiener and Masani [181, and Masani

.[6-by imposing some boundedness conditions on f, the spectral density (matrix)

function of the process.

Recently, using the notion of positivity of the angle between the past-

present and the future subspaces of the process it was shown by Pourahmadi

S-t-3;,--l.,--I-r-that the series representation of the predictor is possible under

some weaker conditions. This was made possible by using the idea of angle due

to Helson and Szeg' [3] (see also Miamee [0 for a multivariate extension of

" this). However these results hold under conditions which require the process

to be of full rank. The main purpose of the preseirt-sttdr is to consider the

same problem, including their autoregressive representation, for the degenerate

WSSP's.. ' ' " -

Now we explain the results of this paper

It is well-known [7] that every purely nondeterministic WSSP has a

one-sided moving average representation as

X= + CIn + X = C n-k'
k=o

where {F is the innovation process of {X } and {C } is a sequence of qxq
"i n "

- constant matrices with

:"tr CkC k < C
k=O k

_ •". , ,..'c . .___ ., ,,. . ... ,m m ,,,.l* ., ,V.',,.,-,a|,,*- . . .. .. .. .. I*
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This moving average representation plays an extremely important role in

prediction theory and statistical analysis of {X n}. For example, from (1.1)
nA

one can obtain the v-step ahead predictor of X (denoted by Xn) based onfl+' n+V
Xn Xn,., as

* n n-1'"' a
0o

(1.2) X =n+-k'
k=\)

v-1
S(1.3) X -Xn+v Y kCk n,-k "

" .Also the moving average representation (1.1) is used in studying the limiting

" distribution of certain statistics, such as the estimators of the autocovariance

and the spectral density matrix, which are useful in the analysis of time

series data collected from {X }.
n

To render the moving average representation (1.1) and the form of the best

linear predictor fully satisfactory we should be able to express the innovation

process c in terms of the past (observed) values of the process X itself, so
n n

*i that the best linear predictor would be also expressed in terms of these

. observed values of the process.

1.4 Definition. 1;e say that the hoving average processes X in (1.1) has an
n

-zuu c.e,.rcssive r rresenteztaton if there cxists a sequence {Ak I o' qxq matrices

such that

00

c _n Y AkXn-k,
k =0

where the infinite series is to converge in the mean.

It is useful to note that (1.1) can be viewed as a stochastic differcnce

equation in ic with X as the input. The existence of the autoregressive
n n



representation (1.5) assures that the difference equation (1.1) has a solution

and therefore (1.5) can be viewed as a stochastic difference equation in {X nn

" with E as the input, i.e. the roles of X and n can be reversed, lue to".n n n

this reversal of roles, the term invertibility of the moving average (1.1) is

sometimes used in the literature on time series, instead of the autoregressive

representation.

Note that if {X n has an autoregressive representation, then it followsn

from (1.5) that the one step ahead predictor of {X I satisfies the equationn

(1.6) A0 X A X

°1

which can be solved for X expressing it (uniquely) in terms of the observed

* values of the process, provided that A0 is invertible. However, as we shall

see in section 4 the invertibility of A0 is tied up with the invertibility of

"" the prediction error matrix G. Thus the question of the rank of G, or equiva-

. lently the rank of the process {X }, enter the scene. Also, it follows from
n

*i (1.5), upon formal substitution in (1.2), that the autoregressive representation

of I\ } may entail an autoregressive representation of its linear least squaren

predictor.

1.7 Definition. Let iX I be as in (1.1) and v > 1 be a fixed integer. We sayn

that the linear least square predictor of {X n has an autoregressive reprerentationn

* if there exists a sequence of constant qxq matrices {li I k=0 such that
. (I s)x == olk k=n()

18 nV k n-k'

where the infinite series is to converge in the square mean.

In the light of Pefinitions 1.4 and 1.7 it is natural to ask how the

mi

.o.
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* autoregressive representation of {X n } and that of its linear least square

predictor are related. In section 4 we show that these two representation are,

. indeed, equivalent regardless of the rank of the process {Xn }, and in fact A0
... 0

can be taken to be I. This result shows the importance of the autoregressive

representation problem of {X n } in prediction theory. To solve this problem

one has to find conditions on the spectral distribution F, so that the infinite

series in (1.5) converges in the mean, which is in turn equivalent to the

convergence of

StrA r A* < oo.
-k=0 = 0

- Although our initial results in sections 3 and 4 have been worked out in the

time domain, which is useful as to the application in time series is concerned,

to get such spectral criteria for the autoregressive representation problem we

-have to move to the spectral domain.

After setting up the notations and preliminary results in section 2, we

*- consider in section 3, a problem which is more general than the autoregressive

representation, namely, to find conditions on F which enables one to write any

Y in the time domain of {X ) as a unique series expansion in terms of X 's. The
n n

-" main result here is Theorem 3.8, which provides some characterization for

this general property. An important consequence of this characterization and

the other results in this section is the fact that if the angle between past

and future is positive then the range of the spectral density f(X) is constant.

. This fact, together with a technique used by Miamee and Salehi 112]) (cf. also

, 1111) reduces our problem regarding a degenerate rank q-variate WSSI' to the same

*problem for a corresponding full rank p-variate (p < q) WSSP.

In section .1 we prove the equivalence of the autoregressive representation

.. .. .. .. . ." ". °'. .' . . , m, ' -°
o ,

. .. ,, , , , 4 . * , ,. .. , . . ° % ,- - - °
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of X and that of its predictor and we show that this happens if and only ifn

the Fourier (Taylor) series of the reciprocal Q - of the factor Q2 of the

generating function (D = 0 Vr of the process, converges to it in the norm of

L (f) (This is Corollary 4.16). We should say here that it seems there is no

bettor srectral criterion for the autoregressive representation, without

further restrictions on X . 1his is important in view of Professor asani's
n

call to find a rood necessary and sufficient condition for the validity of the

autoregressive representation for X or its predictor.'i n

Of course, the necessary and sufficient condition just mentioned is not

very useful because it is not expressed directly in terms of the spectral

density. However, using this in conjunction with our other results, we give

several concrete and useful sufficient conditions for the validity of the

autoregressive representation. By a theorem of Matveev [91, the density of

every purely non-deterministic process has constant rank and our work in

section 4 is under the additional requirement that the range of f is constant,

"hich is of course motivated by the results of section 3 mentioned above. It

is' also shown that analogues of the sufficient conditions due to Masani 161

" and Pourahmadi 114,151 holds true in the degenerate rank as well.

We finally remark that in the presentation of this stud), a special attempt

i made to work in the time domain as far as possible. Such a program is

p;,rticularly useful for the purpose of applications. Also this, and especially

working ith the nonnormalized process }r 1, is helpful as it postpones the~n'

complications arising from the degeneracy of the rank of f, and results in a

factorization of f(') in the form Q(; )*, which whows that the degeneracies

* tO f l sttem from a constant matrix, namely the prediction error matrix G.

[ior more on this see 17, Theorem 13.3

o. 2

• o -. -. •. •• o• .o ,•................................. .. o"• . .. '.. .... . . . . .. -. ..- - • ... . o. . .. o.. ..- o . .
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2. Preliminaries. Let (Q2,G,P') be a probability space. If L 2 ,, P) denotes
0

the Hi lbert space of all complex-valued random variables on Q? with zero

expectation and finite variance. The inner product in If is given by

(x,y) =Exy, x,y F_ H.

Following [7], for q > 1, H denotes the Cartesian product of If with

T*
*itself q tines, i.e. the set of all column vectors X =(x 1l,,...,x) with

x.i H, i = 1,2,... ,2. 11q is endowed with a Gramian structure: For X and Y

in 10~ their Gtaintan is defined to be the qxq matrix (X,Y) = [(x., ,y)]'~=]

Iqis a Hilbert space under the inner product ((X,Y)) =trace (X,Y)

q

S(x.,v.) and norm lXII =V'((x,x)) provided the linear combinations are

* formed with constant q-q matrices as coefficients.
q

For a qxq matrix A = (a..j), tr A = Ya.., A* = (a..) and dot A stands for

*determinant of A. W~hen A is singular At' denotes its Moore-Penrose generalizeod

inverse. Functions are defined on (-7,,,] and we identify this interval with

the unit circle in the complex plane in the natural way. Typical values of

* a function f defined onl (-Tr,-,] or on the unit circle will be denoted by W).

* dm denotes the normalized Lebesgue measure on (-JT,TT]. F~or I < p < ~

denotes thle usual Lebesgue (Hardy) space of functions on thle unit circle.

* Lp (lip idenotes thle space of all qxq matrix-valued functions whose entriesq xq (1,

are in i~i

l'et {X 11i 0.+i,...l iI It is said that iX Iis a qf-variate weakly'

stait i oia r stochastic process ( WSSi') , i f the Graiian itat r ix (X ,,\ J depends only
nn

01n Mt-11i. It canm he shown 1 71 t hat such a process has a sreoty-al77 rro.-,rt'ft /. Q

of thle form
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X e-in X dZ(X)

-IT

where Z() is a countably additive orthogonally scattered 11q-valued measure.

The (l)q nonnegative matrix valued measure F(.) = (Z(),Z()) is called the

ar6etiaZ distribution of {X n. In case F <<din, we say that {X } has then n

s.reatPa. ensit? f = F' = dm" The spectral domain corresponding to the spectral
dm

distribution F is denoted by L-(dF) and is defined by

17-(dF) - 4f; Y is a qxq matrix valued function with H II[ =

TT trY?(O) dF(6) T* 
(6) < }

-iT

It is well-known [7] that L-(dF) with inner product

C - tr 1 dF4*

is a Ililbert space.

For each subset {...} of H sp {...I stands for the closed linear span

of elements of K...} in the metric of 11q and the following subspaces associated

to our process {X I are needed.
n

11(X) sp {Xk, k = 0,+I,. .

P n(X) = sp {X k < n), n = 0,+I,.

: (X) = sp {Xk: k > n}, n = 0,+l.

P ,(x) r P (x)

N {I - sp {Xk; k # n, n 0,+1,

%I o (x) = n n (X).- n

~.............-,/..... .............. .. ...................,.......... -.......,........ .
• "- .'J ","-""" ."". ."'. ".'',"".-'......."....'"......"-."..."."..".-.....-.....-"-."".-".,""...'"". ".'"' .",
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The space H(X) is referred to as the time domain of the process {x }.it is
n

well-known [7] that the correspondence

T: 'I j Y(X) dZ(X)

-H

2
is an isometric isomorphism from L (di-) onto H(X). T is called the k1ooo.

$3mr-h2isr between the spectral and time domain, and plays an important role

in finding analytical conditions, in terms of Fjfor the following important

* geometrical (regularity) properties of tile WSSP {X 1.
n

2.1 Definition: Let {X n be a q-variate WSSP

*a) 'X }is said to be -relz nondeterministic (regular) if

P-C (X) {O}

f) { *is said to be minimal if for some n

N1M ) 10()
n

c) '.s said to be J0-e'ri

N1(X) fo..

d) It is said that the past-present and thle future subspaces of {X nT are at

7s e 7r,-.- e i f

r(\)= oiP) =stip { ((YZ) I: Y F P1 (X ),Z I (X) and



'I -. . . .-. . _ .5 U- I S . .,. i . - -U ,.I .
1
. g, .- n . -. '. ' - _ -. o- . -. - , . --.
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Let {X I be a purely nondeterministic WSSP. The best linear predictor
n

of \ . v > 1, based on X , X n- ."' is given by

n (X n+ M
X = (~()

%,;here the latter denotes the orthogonal projection of X on the subspace

P (X) of I(X). For such a process we define a new process {c n byn n

n = Xn - (X nPn- (X)), n 0,+I,.

and it is called the innovation rrocess of {X }. It is known that {n ) satisfiesn n

(- m'n = m ,n G , and G is called the prediction error matrix of lag 1. A

WSSP {X I is said to be of fuZZ rank if its matrix G is invertible (full rank).n

Otherwise, the process {X } is of de,:enerate rank.n

It follows from (1.1) that the spectral density f( ) of a purely nondeter-

ministic process admits a factorization of the form

f(V) (A)GQ(X)* = ()G 11 2 [Q()GCll 2 ]*,

whe re
00

(X= Cke

k=O

is in H 2  It is shown in [7] that Q(') is an almost everywhere invertiblcq"

function. Thus, it follows that when {X } is not of full rank then f(.) is
n

not invertible.

4. . . . . . . . . . . . * -W~t II ~ m .~ * * - . . . . ... .
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, 3. Basicity and positivity of the angle.

In this section we will define the idea of generalized Schauder basis for

, a set of vectors and also give the definition of the angle between past-present

and future for a q-variate WSSP, and then we give several criteria for a WSSP

X to form a Schauder basis for its time domain H(X). We will also get
n

several other results which are essential in dealing with the problem of

autoregressive representation for degenerate rank multivariate processes in the

next section.

Because of the imporatnce of the mean-square convergences in different

areas of applications (particularly time series analysis) it seems that the

. idea of X } forming a generalized Schauder basis is more appropriate than
n

the %,eaker requirement of {X I forming a conditional basis as studied by
n

Rozanov [17, pp. 104-108].

To get a feeling as to how the question of uniqueness of the representation

of elements of 11(X) in terms of a sequence will arise and should be settled

in the non full rank case we start this section with an example:

3.1 Example. Let {e } be a univariate white noise process, i.e. Fc n

and let IX n be the bivariate process defined by
n

x = { 0mj ,+1,+2,.

I or a fixed K, consider the element Y = { 11(X). Note that for this

clement %%e have several different representations in terms of {X n, viz.
n

.-.. '. .... ,%...... ...... ,.., ..-......-............... '....,. , ,.....,....... ......... 7. * . ...
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e k 1 0 
1)e. 1:J= OjXk 1 j1k= {I 'Xk'

and vet
1 1 1 1)

i.e. there is no unique representation for Y in terms of X 's.n

In view of this simple example and the need for uniqueness of the linear

representation in terms of X 's in practical problems, it is important to findn

conditions on {X } so that every element of H(X) has a linear representationn

in terms of {X n which is unique in some sense.n

Next we define two kinds of uniqueness for linear representation of

elements of I!(X). Throughout this section IA k  denotes an arbitrary sequencekO

of qq matrices, and it is understood that the infinite series A X converges
n n

in the norm of [tq or in the square mean.

3.2 Definition. Let {X , n=O,+l,+2,.... be a q-variate process in Hq .
n

a) ;X } is said to be a Schauder basis for I-(X) if every Y E H(X) has a uniquen

representation

0o

Y A n X nI n = - oo nn

in the sense that if Y" has another representation

=Y A'X

p-0

*" then,

A = ', for all n.A n 1

h) It is said that {X is a SoencpzZi::cd "hauder Low:'n for II(X) if everyi" " Ii"

L-



," r - .. . . . . , .% .
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Y E H(X) can be represented as

Y j A X nnn

n= _co

. and furthermore this representation is unique in the sense that if Y has

another representation as

-, Y -- A'X ,

n n

then,

A X = A'X for all n.
n n n n

3.3 Remarks.

-* a) It should be noted that the notion of Schauder basis for 1t(X) defined in

3.2(a) is different from that defined in the literature on classical Banach

spaces. Since here 1(X) is a linear space over the ring of qYq matrices instead

of the field of scalars. In this setting it is possible to develop a theory

*- of Schauder basis for 11(X) which is similar, but technically different from

that for classical Banach spaces.

b) For the classical Banach spaces the notions of Schauder and generalized

* Schauder basis are equivalent. 'his is not the case for It(X) as Example 3.1

* shows. In this example {X } is a generalized Schauder basis but not a Schauder

basis.

Since a generalized Schauder basis for I1(X) is not necessarily a Schauder

basis, it is of interest to impose conditions on {X } or 1 so that the two
n

notions become equivalent. When X } is a q-variate lVSSI' we have:

"-' 3. 1 I'lhorem. Let fX be a q-variate WSSI' with the spectral distirbition 1

and let ' (x n' 11 fT1 dl: l) . Then the following conditions are cqi valent
nn -U7

--- ' m " " : "h t t - I - JJ .
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a) {X n  is a generalized Schauder basis for H(X) and F0 is invertible.

b) X " is a Schauder basis for i(X).

Proof. a =>b.

Let Y F II(X) have two representations, viz.

CO~ 00

= AX A-Xn n nnn=-oo n=-

si.n.e {X n is a aeneralized Schauder basis for 11(X) we have

A X = A'X , for all n.
n T n n

Tbus

AT = An(X,X) = A(X ,Xn) Ant o , for all n.
n nn'n n n n nO

But, since r 0 is invertible we get

A = A', for all n,
n n

i.e. {X } is a Schauder basis for 1t(X).

b -> a.

Su: pose Xn } is a Schauder basis for ll(X) and r 0 is not invertible. -hen

there exists a non-zero vector a = (a, . a.. ,C) such that

q

a.X = 0,

:,his t, t'at . o r = Y r II(X) we have

y ' = (1= . , 1 fx ~ 0

0I 0 x }~
nq 0.

.............. ............... .... ..... ...- . "...'.".....-- ' .'- -'-. ,, ',. "i #', '"""'"""' " ." " ."."......
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and ydet t  c

0 .. 0

which contradicts the assumption that {X n } is a Schauder basis for H(X). Q.1.).

3.5 Remark. Since F 0 > G, it follows that when {Xn ) is of full rank, then

the two notions of bases are equivalent.

The next theorem which provides a necessary and sufficient condition for

a a-variate process {X J to be a generalized Schauder basis for II(X) is essential
n

in the rest of this work. This theorem is a generalization of a well-known

theorm of Nikolskii, cf. [4, p. 103], to the setting of H(X). Although the

main steps of its proof are the same as those in the classical setting, the

details are different as the Ak's here are qxq matrices instead of being complex

scalars. Since the proof is lengthy we have relegated it to an appendix.

3.6 Theorem. .\ q-variate process {X I is a generalized Schauder basis for 1(X),n

if and only if there exists a positive real number NI such that

A n X n1 Nil n X ni
n~k n=-oo

00

for any ( > k and all qxq matrices An, n = 0,+1,. .. , with ' \ n V n
n= -oo

In tgCneral, it is hard to verify the condition of Theorem 3.(. Ilowever,

when {\ n is a WSSt', then as it turns out this condition is equivalent to the

geometrical condition that the past-present and future suhspaces of X I being:n

at positive angle. This is summarized in the next lemma %hose proof,hcinp,

exactly the samei as in the univariate case (cf. 13, pp. 12)- 1301), is omitted.

"- .' .'i ' :- -.' . '- " '- ."' -' - - .: ) • - . .- . V . ' '. -,- - .'. . ' -. . . . .' . .. . -. . - . . , .' ., .. . ,' -'. ... .,-- ,- - --.. ' , .- -
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* 3.7 Lemma. Let {X } be a q-variate WSSP. Then the following are equivalent:n

a) .-(Xj<l.

* bj There exists a positive number N1 such that

AI n AXn < M11 Y AnXHni,
n4k n=-oo

for all t > k and all qxq matrices A n, n =O,+l,+2, . .,with A A X nc10

Next, by combining Theorem 3.6 and Lemma 3.7 we get the following important

result.

*3.8 Theorem. Let {X n} be a q-variate WSSP. Then the following are equivalent:

*a) .(X) <lI.

*b) {X n is a generalized Schauder basis for H(X).

In view of Theorem 3.8 it is important to characterize WSSP's for which

* p(X\)<l, i.e. to find spectral characterization for this useful geometrical

*property. When {X n is a q-variate WSSP of full rank such characterization is

given in [10,14,161. It is important to note, however, that the techniques

used in these papers do not work when (X n is not of full rank.

Here we usc a different method which is based on exploiting the character-

ization of o(XJ<l given in Theorem 3.8 and the uniqueness of the representation

of elements of 11(X) when {X Iis a generalized Schauder basis. As a result
n

* of this we show that when {X }is a generalized Schauder basis for 11(X), thenn

'N is .1 -regu lar.

3 1 heorem. Let {\ he a qI-variate WSSP with rI l.Then I X is .1 -re iu Iitr.

Proof. o'~~~ (X 1<1 , t~ o lowas /ro?7 'Phrorem 3. H? that X in

dn
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*Schauder basis for 11(X). To show that {X Iis J -regular, let
n 0

00

Y E:NI-0 0 (X) =n M (X.Thus

n

?.0w, as in the Troof of the "if" part of Theorem 3.6e one can show that

*{X k k # n1 is a aeneralized Schauder basis for M n(X). Hence, there exists a

* series rerresentation for Y;

Y A X for allin.
knk,n k'

Fromr this and the uniqaueness of such representations as defined in 3.2 (b) we jet

A X =0, for all n,k,
k,n n

which imlies that Y =0. Q.E.~

As an immediate consequence of Theorem 3.9 we see that if D(X)<l, then tile

process IX I is minimal, and purely nondeterministic. The following

* Corollarv is very crucial for our purposes.

* 3.10 Corollary. Let {X } be a q-variate WSSP with the spectral distribultion F.n

* If -(X)<l, then F has the following properties:

a) Viaboteycontinuous with respect to the LeheCsgue measure on (-7 ,n71

h) R (f) constant supspace a. e. , where f is thle dens ity of the process and R (f)

denotes the range of f when f(- j is viewed as an operator from . into

cf .where t" denotes the Moorc-Penrose general1 :ed inverse of the
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Proof. Since p< 1, by Theoremn 3.9 our WSSP IX }is J0-reatlar and it is

.. aka.:on wxWeron [5, Theorem 5.3] that {X I is .J-renir i''n
n 0

i'F satisfies the conditions a,b, and c.

C:orollary 3.10 gives some very useful necessary conditions for Q(X) to he

strictly less than one, thle most important of these is the condition Concerning

the constancy of the range of f as the subsequent argument will reveal. Thus

in the following we work under tile following natural assumption:

* 3.11 Assumption.

(i) F << dmn,

(ii) k'(fj constant a.e.(dm),

1
q qq

Under this assumption our main problem is reduced to characterizing

*WSSP's for which Q(X>1,. Since R(f) is a constant subspace of C , we let R

* denote this subspace and p(() < p < q) its dimension. It follows from the

proof of Theorem 3.1 in [121 that there exists a qxq constant unitary matrix U1

suchi that

(g(.) 01

(5.12) Uf (-)IJ* = 1-0-I,-

*whecre i, I is a1 pp ma1 trix-valued function on (-vrjf. It is easy to check thiat

sis the -spectral dens it of ai p)-ar iate ptjrelI nonde t ermin ist ic full rank WSSI

* a ~ .'[his mfat ri x 11 an1d thle lVSSI' fl, play important roles in whlat

* fol lo%%s and their relationship with f and {x is prescribed by(.1)

throughout this paper. An important consequence of this relIatijonshi p is thle

f fo 1low i nl.

.. .. . . . ... . . . . . .. . . .



18

3.13 Theorem. Let {X } be a q-variate (not necessarily full rank) WSSP whosen

spectral distribution F satisfies (3.11). Then, with notation as above, we have

-(X) <1, if and only if p(Y)<I.

Proof. it follows from 3.12 that

U x = n
n

thus for each Z E H(Y) we have

fl = IJ £1(X) .

Assume that M(X) <1. Then by Theorem 3.8,n has a representation,

n= AX.

Therefore,

CO

Urn = U A U*UX
n nc

.w. i.-?: i- , 2ies that, with C = UA -Zo, w e hs

," C nnn

...... I)Y
0 0/

tart

fl n
t;:c :,~:~ ~r) on" ,czn shco-N that this representation of Z is uniqu c

St',e r' cc of Jcfi'tion .us {Y I is a .:enera:zed S-hauwhi b)-,i7

. . . . . .. . . . . . . . . . . . . . . . .
...-"
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II(Y) .and therefore by Theorem 3.8 we get that

P(X)<I.

The roof of the other direction is similar. O.I:.1.

Theorem 3.13 reduces the problem of characterizing non-full rank processes

with LX)<l to that for full rank processes with smaller dimension. In view of

this one can invoke the known results in the full rank case and state the

appropriate conditions in terms of g, the spectral density matrix of the

corresponding full rank process {Y 1. We should note that tile statement ofn

the next theorem is not correct if one replaces g by f, as Example 3.1 provides

a counterexample to this effect. Proof of the next theorem is immediate from

3.13 and the results of [10].

3.14 Theorem. Let {X } be as in Theorem 3.13, then the following aren

*. equivalent:

i a) r(X)<l.

1 2

b) L(g) - I. and the Fourier series of any function l in 1P(g) converges to

in the norm of 1,-(g.

A\lthough Theorem 3.14 provides necessary and sufficient conditions for

. n\,<l in terms of the spectral domain L-(g) of {Y }, it does not provide "miv
n

concrete conditions involving the entries of the spectral density. In the

. following we review some known results which provide more tangible conditions

for I( )'-I. However, in light of 'Theorem 3.11, we state all these results for

a full rank WSSP.

In the univariate case a complete characterization of WSSP with ,(X)-i is

i . ,. • , " . ....- ,-° .- * w*.,,- . *. .,.. . o. • o4•. . . . - , . . .
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given by Helson and Szeg6 [3].

3.13 Tleorem. Let {X } be a univariate WSSP with density f. Then Q(X)<], if
n

and only if

u+v
(3.16) f = e

iT

where u and v are bounded real-valued functions with JIvfJ. < - , and v denotes

the harmonic conjugate of the function V.

For q-variate processes one can find such a characterization provided that

f has some special properties. For a qxq matrix-valued function, denote the

smallest and largest eigenvalues of f(X) by f1 (X) and f q(X), respectively.

With these notations we have [14, Theorem 5.3].

3.17 Theorem. Let {X } be a q-variate purely nondeterministic full rank WSSP- n

with a spectral density f satisfying

(3.18) f
'fl q ooI

"." Then (1<l if and only if f satisfies (3.16).
q

This theorem provides a characterization for p(X)<l in terms of the largest

eienx'altue of f(') which in general might be hard to apply. The next lcmma

provides ; necessary condition for p(X )<l in terms of the diagonal entries of

- the deiis i ty matrix f. Proof of this lemma is immed i ate from the definitions. of

ldl the Kolloogor'o\''s isomorphism.

- 3. 19 L.emma . Let { I be a purely nondeterministic WSSP with the spectral,- n

density f. If , )<l, then for each J 1,2,... ,2, f.. is the diagonal element

of f which satisfies (3.16).

L**."
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It is certainly of interest to show that the condition of Lemma 3.19 is

also sufficient for c(\)<1. However, this is not true in general. It turns

out that such a condition is necessary and sufficient for P(XVlI, when f is

f)q an l~ qnearly diagonal [1]. Let f = (f and f - be its with
1.J i~~ = (f J j=1  e i s vrlw t

this notation we have the following definition due to Bloom [11.

3.20 Definition. An almost everywhere invertible matrix-valued function f is

said to be near.' dica.onal, if

hlfii f1 1  <  , i = ,2.....q.

It is easy to see that every diagonal density f is nearly diagonal,

but the converse is not true. The next lemma provides a large class of nearly

diagonal matrices which are not necessarily diagonal.

3.21 Lemma. If f satisfies (3.18), then f is nearly diagonal.

The following important theorem provides a necessary and sufficient

condition for a q-variate WSSP {X } with a nearly diagonal density to have the

.. propertv :(X)<I.

H. co ren* . Let {N } be a q-variate purely nondeterministic full rank I'SSP'
n

%,ith a nearly diagonal spectral density matrix f. Then r,(X)<I, i f and onnl

. if for every i, I < i < q. f.. satisfies (3.16).

P) 1oo)f. It is i inicediate f'ro in Propositions ,.1 , 4.5 1.
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4. AUTOREGRESSIVE REPRESENTATION OF WSSP's.

In this section we establish the equivalence of the autoregressive repre-

sentation of a WSSP {X } and that of its linear least

squares predictor based on the past. As a consequence of this we obtain a

spectral necessary and sufficient condition for the latter. This spectral

characterization is used to provide more concrete and sufficient conditions, in

terms of f, for the autoregressive representation of Xn+v)

We have from the moving average representation (1.1) of {X n, and thatn

n is its nonnormalized innovation process:

(4.1) n= 6mn G, for integers mn,

(4.2 (Xm,)= O, m < n.

For the time being we assume that {X } has a mean-convergent autoregressiven

representation as in (1.5) for a sequence {A k}. First we attempt to express

these AV's in terms of the Ck's in (1.1). We do this in order to show in a

natural way the importance of the rank of G in this determination. Iowever, as

we shall see this time domain procedure does not provide a satisfactory solution

to nur problem when {X } is not of full rank. Therefore, when 4X } is ofn n

degenerate rank we appeal to a spectral domain argument and resolve the problem

of determinin.g the AK's in its full generality.

Irom i.1) and (4.2) for any ' ' 0 and any integer n, we have

G' = ( ,- , = Y Ak(X = (Xo , k'-1 ' " k -k "-n-f' k i-k -n-i')
' 0k= k)=0

which comb ined w i th

*n-k' n- -k ; ' _O,

..!
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* gives

(4.3) A - 6 Ot for all 1£ > 0,

k =O

* or equivalently (since CO = 1),

A 0 G = G,

(4.4) ee
A kC t G 0 (or A G A k AC f-G), Z> o.Ik=0 k' =0

This shows the relationship among the matrices A 's C 's and G, when
k ' k

I X n:has a mean-convergent autoregressive representation. In particular, it

follows that when G is not of full rank, then A0A1..can not (necessarily)

* be found uniquely in terms of C Is*

To reveal more fully the role of G in determining tile A kos, we need to

* introduce some notation. Corresponding to thle moving average representation (1.1)

*of fX n we consider the matrix-valued function on (-7,71 given by

k=0

*it is known [7, Theorem 13.3] that for almost every in 1-7,71 this matrix function

is invertible and that the spectral density matri\ fW . then admits the

* factori :at ion

(4 .t f(") = Q0)CS?( )* =J Q()G 11*0)(

*where G'11 is referred to as thc generating funct ion of tile WSSI' I{ .

Let the mat Hi x-va 1 tied funct ion YO ~) denote the i somorph of in 1.7f

then it fol lows from (1 .5) that
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(4.7) ''(X) A keik

k=O

In light of (4.3) or (4.4) it is easy to check that the functions QAD and

Y satisfy the equation

(4.8) Y ¢ r= Y Q G = G.

"* This shows that when G is not of full rank then one may not be able to express Y,

* the isomorph of copin terms of P or Q. However, when the process {X I is of full0' n

rank or when G is invertible then from (4.4) and (4.8) one obtains explicit

* formulas expressing Ak's in terms of the C 's and what is more important or
kk

. even surprising is that from (4.8) we get Y = VG = -1.

The previous time domain argument along with the assumption of existence

of mean-convergent autoregressive representations of {X n was used to show the" n

"- shortcoming of the commonly used time domain approach in handling problems

related to degenerate rank WSSP's.

Next, we use a spectral domain argument to show that for any purely
-2 -

-22  nondeterministic WSSP, Y, the isomorph of Ein L (f) is given by Y = 2

Let ' denote the isomorph of EV then we have from (1.1) and the Kolmogovov's

isomorphism that

,'-in -inX -i (n-l)X + = -inXTe = (e -  + Cl e+ .. ) { ) = e .( )}( ,

or = I. But, since 2 is invertible a.e., it follows that

o-.4.9: 1 = Q'Y.

*- 1huS we have

4.1o Lemma. Let iX be a purely nondeterministic q-variate WSSP with the
n

spectral factorization (4.6). Then the isomorph of n in 1.(f) is given by, n"

..................................................... . •. .
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-inA -1

"e ~1(A).

Another important consequence of (4.9) is the following set of identities

which are crucial in the proof of Theorem 4.12.

AO= I

(4.11) , -
I AkC = Cf-kAk = , - > O.

k=O k=O

In the next theorem we establish the equivalence of the mean-convergent

autoregressive representations of {X } and that of its linear least squares
n

predictor Xn+v 'j > 1. We note that the method of proof of this theorem is

similar to that used by Bloomfield [2, Theorem 1]. But his method does not

generalize to the case of q-variate degenerate rank WSSP's, because from (4.4)

one can not conclude that E Cek Ak = 0, for t > 0, a fact which plays a crucial
k=O

role in the proof of the theorem, cf. (4.15).

- 4.12 Theorem. Let {X I be a q-variate purely nondeterministic (not necessarilyn

full rank) WSSP with a one-sided moving average representation as in (1.1).

*" Then the following are equivalent:

a) IX n  has a mean-convergent autoregressive representation.
An

b) For v > 1, we have

kOX = :I Xn+V vk n-k'
k_0

V
-'.. 'where 1 vk = - C.A k = 0,1,2,... and the infinite series definingvk V1 i+k'

. is convergent in the square mean.

• ~~~~~~~............ .. "......................... -.-''.'- . .... ,-.... .... - " .. .--',--.....-.. --' .....-. '
i .:? ,)-. .... .: ., ., ,. ...... .. ,.p. . ..'. ... *.*.. ... *..*. .. .. .i . :..:..-.
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Proof. (b) => (a) is trivial in view of (1.3).

To show that (a) -> (b), from (1.3) we get

v-i V

" (4.13) Xn+, - X = C kE+,0k = cv .C ..
k=O j=1

Now or (a) or (1.5) we have

v V-1 0

c C A Xn~~ C . A AXfl + A X
i=1 C . =1 Vi k (, V-j nk j-k k n+i-k=0 j=1 = =1

j-1 V

jC1\ - k kX n j-k jl-j I A j+k Xn-k

V V Ox, V
C A ) + (jC,_A X

k=l j=k -j n+k k:O j=1 -j

olso, fro'i (4.11) we ,et

V v-k C0 Ao =1, v =k,

(4.1S) C A C CVk As
j=k - s=O

,.0 , v > k.

B -oonbinin-7 (4.13), (.1.14) and (4.15) we conclude that

00 Vx - x =x + ( C A k) k
n+v n+v nv k=o v-j j n-k'

or

x Y . x n-k  Q.E.l.
k=O n

It is shown in Lemma 4.101 that the function e 1 (X) is the isomorph of

.. in l.- f}. Thus, it follows from the isomorphism between the time and

"- spectrial domains that {X } has a mean-convergent atutoregressive representation

in Il(X), it and on1 if the IouI'ier scries of Q- converges to Q2 in the norm

...............................
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of L2 (f). This observation combined with Theorem 4.12 gives the following

imn:ortant characteri:ation of processes {X } which admit mean-convergent
n

"- autoregressive representation.

* 4.16 Corollary. Let {X n be as in Theorem 4.12. Then the following are

* equivalent:

a) {X I has a mean-convergent autoregressive representation.n

b) For v > 1, X has a mean-convergent autoregressive representation.

c) The Fourier series of 2 converges to £- in the norm of L 2(f).

4.17 Remark. It should be noted that for any density f with factorization

-1 2,- 1
as in (4.6), Q -lP.(f). However it is not necessarily true that Q cI.q>'q

Thus, one may not be able to define the Fourier coefficients (and series) of
-. l

*'ll the function f -i One possible way of circumventing such difficulties is to

work with the Taylor coefficients (and series) of Q 1. This is possible since

(z), jz < 1, is an analytic function and therefore has a Taylor expansion.

.- In this paper, however, we do not pursue this approach. Instead, by using

some of the results of Section 3 we impose appropriate restrictions on f so

that difficulties of the above type can not occur, as the following theorem

Sshots.

• 4.18 Theorem. Let {X I be as in Theorem 4.12 with o(X)<. Then,
n

.a X has a mean-convergent autoregressive representation.n

b) For v > 1, Xn has a mean-convergent autoregressive representation.-- _ n~v

• •Proof of this theorem is immediate from Theorem 3.8. Note that, since {X }• . n

forms a enera lized Schauder basis for 11(X) the autoregressive representation

of {X or X is ;lso unique (in the sense of Iefinition 3.2(b)). Anfol II k

%%

.... . . . . . . . . . . . . . . . . . . . . . . . . .

,''.-"."". ."'.". " -". .".".. .. . . . . . . . . . . "•. . ". . ."-. . ."-. ., -.-. ". ... . .....- . .. . . . . . . ..-... .".." . -" • "" . "•" '" ' ."." .' ." .' . '
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alternative proof of Theorem 4.18 can be obtained via Corollary 4.16 and

Theorem 3.14 and observing (from (3.12)) that

.. - tIfU* - UQU*UGU*UQ*U* = - I - ;i I - a12

I. ii 211 22 1 1

I Ii I
0 1 0

where G is the one-step prediction error matrix of {Yn } introduced in Section 3.

It follows from (4.19) that the Fourier (Taylor) series of Q2 converges to

2 1 in the norm of L2(f), if and only if the Fourier series of 2 1 converges
11

to in the norm of L (g)

Theorem 4.18 provides an analogue of Theorem 4.1 [141, for the degenerate

rank case. Next we provide an analogue of a theorem due to Masani 16],

when 1X I is of degenerate rank. For the time being we assume that f satisfies
n

the following conditions:

(4.20) f L , f El.• . qxq x

Therefore, it follows from (4.6) that

::l12 -1 L2

(4.21) = Q' /1; l E qxq

Since G = V , from the Riesz-Fischer theorem and the boundedness
1: : /2 - 1

of f. we conclude that the Fourier series of 4 G ( 1 converges to
" I/_' -1 -,

C in the norm of 1, f) . However, this does not necessari ly imply

that the I ourier (laylor) sciics of -]converges to .- in the norm, of I. r)

I 2 - ' .-..... • '..'-. -. " .'..'.,., ' ., ". - .',.'.-....-.,'.'....-...-'... .-. .... .,'.-...-,-..."..... . .-... .,."-,."-.
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(since G is not of full rank). The latter convergence is what we need to

establish the convergence of the autoregressive representation of iX } orn

zXn+v' (cf. Corollary 4.16). Thus we need an additional condition so that

(4.21) implies that

(4.22) -1 E L'xqxq

It is easy to check that if f has a constant range then (4.21) implies (4.22).

Therefore, we have proved the following

4.23 Theorem. Let {X } be as a purely nondeterministic WSSP with the spectral
n

density matrix f. If f has a constant range and satisfies (4.20) then,

a) ix has a mean-convergent autoregressive representation.n

b) For > 1, X has a mean-convergent autoregressive representation.

Let A denote the class of densities for which c(X)<l, and S1 denote the

class of densities satisfying the conditions of Theorem 4.23. One can define

a lai-er class, denoted by A ® NI, which contains either of the previous two

*~ classes:

112 112
{ N1f: f = fI f-f f I A, f, f Ml.

Let Xn } be a WSSP with density f E A 0 M, then by using the method of

proof of Theorem 3.2 in IS], one can show that {X I or X has a mean-convergent

autoregressive representation. Similarly, one can form even larger classes

based on A ® M, for which the corresponding processes iX I admit mean-summabIlen

antoregressive representations. Here, we do not discuss the details of these

ideas, as already they have been studied in [1S1. The results of the later

part of this section reveal that the problem of autoregressive representation
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of a degenerate rank process {X } can be reduced to that of a full rank
• n

process of smaller dimension, and therefore one may utilize Lhe known results

of the latter case. These can be found in [10, 14, 15].

. .,. .. . . . . . . . .

. .
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S. Appendix: Proof of Theorem 3.6.

Throughout this Appendix A and C , n = 0,+I,..., stand for qxq constantn n_-

matrices.

First, suppose that there exists a positive number M such that

L oo

(5.1) II < A I < I AX n X n , for all k > Z.
n4 nnn -  n

Let Y £ H(x), then since [l(x) is complete we have

Y = lim Y
nn-)oo

with
n

Y ( cn)x. n=1,2,...,n i i' ' " '
i=k

• : n

where k , m are integers. Next, we show that for each fixed i, {C (n)x.. is
n n I I

a Cauchy sequence in H(X). For this, note that from (5.1) we have

(5.2) I( (n)x i - c < HIIY n  n

Since {Y } is convergent and hence a Cauchy sequence in H(X), it follows fromn

(5.2) that {C(n). . I is a Cauchy sequence in II(X) . Thus there exists Z. C_ !I(X)Ii 1 11

such that, for each integer i

c(n)X ., in ll(X), as n -
I I

But since C X sp {X.I and E sp {X.} we have . C.X. for some matrix1 1 1 1 1 21

C.. Therefore,

.C.X. = lm (n)
-.. X. I 1n C.

. To finish the proof of the first part wc need to show that

r* %

.,S.*** "'~

* , S** .. . *. * * * * .* . '

- '
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0o

(5.3) C cx. HX)
1 =- 1

and

CO

(5.) 1 1

For this let E > 0 be given, then we can choose k > 0 such that

I I Y - II< C whenever nn > k

Now, for any integers m0 < M1, m. < in_., by triangle inequality and (5.1) we have
0 - i -t .

(C.n)X. - c. x + ( x. - cnx <

i (C X. Cni)m + 3  C<1 1 0* I M 2

Letting n' - o , we get

iM_

.- (5.s) C (c X. - CX.) + [ (5n)X- C.X < 2M,
i I 1 1

i=m 0  i=m 2

whenever n > k .

By choosing m1 and m., large enough so that

(k +1)
ci N. =0 , for all i I[ml,m,

we get from (5.3) that

cI x. + c. :xil < 2M..
i_ ii i= i-

ti
Ih 'el'ort" { ( .X } is 1 CauchV sequence in II(X). Since II(X) is complete
t' I r Ito'] s "i 1=-n

- thi.5 proves (5.31. It remains to show (5.4).

• ~~~~..... ,.. ..- .. ...- -............- '.-....".._'............. . .. ... ... .. ...............-. .... . .. . ....
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To this end, for given E > 0, it follows from (5.3) that there exists

N: > 0 such that, whenever mi, m2 > N., then

m 1 m

-(5.6) It [ c~. x + I c x1i1 < £, for all mo < ml, m2 < m.'.
m0 =m

Also, for n > k we have

m mm 2  m ,
(5.7) n i~m -cn = [C. c Ixj : lira I c~nx. - Z 5("' )x p'11• i Xi 1j Ci ij lm 1 .1 i i 1 , i Xii=M1  i=m n'-*m i=M1  =m1

< M lir lYn - Yn, I ,

nn n-(n,-

where the first equality holds true because Cn)x. - CX for each i, and

the inequalities are the result of (5.1) and the choice of k . Now, for n > k

we can choose m1 and m-, large enough so that in addition to (5.6) we have
% "" m0 0

Y n. c (n). : I c (n) X
l~mi=-_00(n),i

* where C n s not present in the original representation of Y should be
n

interpreted as zero matrix. Then,

IlYn - I CiX1 = 11y c~n) _ y -X <n~ i=0 i --0 j-0

C (n) X + I X" (C n ) X. - cx.) +
i/1ml,m 2 J 1 ~l1

C .X < (NI + l)E.

_ i [m1 ,m2]

.- Because the first term on the right hand side of the inequality is zero (recall

hot, m and m, are chosen), the second term is less than MF by (5. 7), and the

third term is less than t by the choice of mI and m, in (5.5). And this

' establishes (5.4).

...........................
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Finally, to show the uniqueness of a representation of Y in the sense of

Definition 3.2(b), suppose that

C.X. C.X..
1 1 1 . i11

=_O i=-Mo

We have from (5.1) that

cI (.x. - c.X. II < MItY ,I

which implies C.X. C.X., for all integers i.

To prove the other part of tile theorem, assume that 'X } is a generalizedn

Schauder basis and define the space S by

0

S = {{C.X.. ;0 C.X.cH(X)).1 1 1 .
-° 

iCo 1 1

It is clear that S is a linear space and the following defines a norm on S

)C- ix i=_ S = sup x.
m <m i=m

No%, by using the ideas in the first part of the proof of this theorem, one

can show that S with the norm defined above is a Banach space. Consider the

operator T:S 11(X) defined by

l' - i .1 i _° 1 = C .X ..

BY' us iju the two defining properties of a generalized Schauder basis it can

be shown that I is a one-to-on and onto operator. I urthermore, I is bohlnde-d,

bccaulse

i

S. .. e.o... ... . . . . . . . . . . . . . ..• .-. *.' -. ' ..- S..- .. -..*. ; --.. .. .~ -... * *- " . 5-.. ... .. -.. ,......'. ' -.-..5. -; -'.. - . ......- -: , -
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Thus by the open mapping theorem T -1is bounded. By choosing M =H

%%C get

IMc x iil <M . ji I11M)

or equivalently

fOD

C Y .x.I < ,II C CX11, for all m < n, which is the same

as (D1) .
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